Oxomolybdenum(IV) Complexes with Tertiary and Ditertiary Phosphines

By MISS L. K. ATKINSON, A. H. MAWBY,* and D. C. SMITH

(Imperial Chemical Industries Limited, Petrochemical and Polymer Laboratory, P.O. Box 11, The Heath, Runcorn, Cheshire)

Summary Diamagnetic complexes of the types $MoOCl_2L_3$, $MoOCl_2L(LL)$, and $[MoOCl(LL)_2]X$ (L = alkylaryl phosphine; LL = ditertiary phosphine; $X = BF_4^-$, BPh_4^-) have been prepared.

THE rarity of oxomolybdenum(IV) complexes contrasts with the abundance of oxo-species in the +5 and +6oxidation states. A few poorly characterized oxalate complexes have been reported,¹ and the species obtained on irradiation of solutions of $[Mo(CN)_8]^{4-}$ has been identified as trans- $[MoO_2(CN)_4]^{4-2}$ Recently, five-co-ordinate, squarepyramidal complexes of the type $MoO(BB)_2$ [BB = dialkylor diaryl-dithiophosphate,³ diethyldithiocarbamate,⁴ or $\frac{1}{2}$ (phthalocyanine)⁵] and a six-co-ordinate complex, MoO-(EtOCS₂)₂(C₅H₅N)⁶ have been reported. All these complexes have low, or zero, magnetic moments.

We report new series of diamagnetic, six-co-ordinate complexes of oxomolybdenum(IV) with tertiary and ditertiary phosphines. These are of the types $MoOCl_2L_3$, $MoOCl_2L(LL)$, and $[MoOCl(LL)_2]X$ (L = MePPh₂, Me₂PPh, EtPPh₂, Et₂PPh; LL = Ph₂P·CH₂·CH₂·PPh₂, cis-Ph₂P· CH:CH·PPh₂, Me₂P·CH₂·CH₂·PMe₂; X = BF₄⁻, BPh₄⁻).

The blue to green complexes MoOCl₂L₃ were prepared by

the reaction of sodium molybdate with alkylarylphosphines in ethanol containing a small amount of hydrochloric acid. Triphenylphosphine, under the same conditions, has been reported to yield [PPh₃H]₂[MoOCl₅],⁷ and in the presence of larger amounts of hydrochloric acid analogous phosphonium salts are obtained from alkylarylphosphines. The latter are, however, reduced to MoOCl₂L₃ by zinc dust in the presence of an excess of the ligand. Alternatively, the phosphines react with $MoOCl_3(C_4H_8O)_2^8$ in tetrahydrofuran to yield, initially, unstable red solutions, probably of MoOCl₃L₂, which are readily reduced by zinc amalgam to MoOCl₂L₃. The complexes MoOCl₂L₃ decompose in air, at rates increasing in the order MePPh₂ (stable), Me₂PPh, EtPPh₂, Et₂PPh (very unstable). X-Ray diffraction studies of a single crystal of MoOCl₂(Me₂PPh)₃ gave a molecular weight of $n \times 580$ (required: 597). The presence of a terminal Mo = O group in the complexes is indicated by a strong, sharp i.r. absorption in the range 940-956 cm⁻¹ (Nujol).

On heating under reflux in ethanol with an excess of diphosphine, the monophosphine ligands of the complexes $MoOCl_2L_3$ are rapidly displaced, with the formation of stable, violet to purple complexes $[MoOCl(LL)_2]Cl$, which

may be precipitated as the fluoroborate or tetraphenylboron salts. Of the diphosphines investigated, only Ph₂P- $CH_2 \cdot PPh_2$ failed readily to displace the monophosphines. The complexes are 1:1 electrolytes in nitrobenzene and have i.r. absorptions due to v(Mo=O) in the range 950-959 cm⁻¹. The complex $[MoOCl(Ph_2P \cdot CH_2 \cdot CH_2 \cdot PPh_2)_2]$ $[ZnCl_3$ (Me_2CO)], prepared by a different route, has been shown by a full X-ray structural analysis to have a trans-configuration,⁹ and from the close similarity of the i.r. spectra the present complexes are assumed also to be trans.

The intermediate complexes $MoOCl_2L(LL)$ (L = MePPh₂, Me_2PPh ; $LL = cis-Ph_2P\cdot CH: CH\cdot PPh_2$) were prepared by

- ¹ P. C. H. Mitchell, Co-ordination Chem. Rev., 1966, 1, 315.
 ² V. W. Day and J. L. Hoard, J. Amer. Chem. Soc., 1968, 90, 3374.
 ⁸ L. F. Lindoy, S. E. Livingstone, and T. N. Lockyer, Austral. J. Chem., 1965, 18, 1549.
 ⁴ R. N. Jowitt and P. C. H. Mitchell, J. Chem. Soc. (A), 1969, 2632.
 ⁵ H. A. O. Hill and M. M. Norgett, J. Chem. Soc. (A), 1966, 1476.
 ⁶ R. N. Jowitt and P. C. H. Mitchell, J. Chem. Soc. (A), 1970, 1702.
 ⁷ H. Gehrke and L. Bowden, Inorg. Nuclear Chem. Letters, 1969, 5, 151.
 ⁸ K. Feenan and G. W. A. Fowles. Inorg. Chem., 1965, 4, 310.

- ⁸ K. Feenan and G. W. A. Fowles, *Inorg. Chem.*, 1965, 4, 310.
 ⁹ V. C. Adam, U. A. Gregory, and B. T. Kilbourn, following communication.
- ¹⁰ J. Chatt and G. A. Rowe, J. Chem. Soc., 1962, 4019.

stoicheiometric reaction of MoOCl₂L₃ with LL in ethanol. They are air-stable and are readily recoverable from solution. They are non-electrolytes in nitrobenzene.

These oxomolybdenum(IV) complexes are analogous to the isoelectronic diamagnetic oxorhenium(v) complexes of the types ReOCl₃L₂ and ReOCl₃(LL) prepared by Chatt and Rowe.10

The lability of the MoOCl₂L₃ complexes makes them potential precursors for the preparation, by exchange reactions, of a further wide range of oxomolybdenum(IV) complexes.

(Received, September 4th, 1970; Com. 1497.)